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Introduction

Introduction

In order to decipher many discussions in multivariate texts, you need to be able to think about
the algebra of variances and covariances in the context of random vectors and random
matrices.

In this module, we extend our results on linear combinations of variables to random vector
notation. The generalization is straightforward, and requires only a few adjustments to
transfer our previous results.
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Random Vectors and Matrices

Random Vectors

A random vector ξ is a vector whose elements are random variables.

One (informal) way of thinking of a random variable is that it is a process that generates
numbers according to some law. An analogous way of thinking of a random vector is that
it produces a vector of numbers according to some law.

In a similar vein, a random matrix is a matrix whose elements are random variables.
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Random Vectors and Matrices Expected Value of a Random Vector or Matrix

Expected Value of a Random Vector or Matrix

The expected value of a random vector (or matrix) is a vector (or matrix) whose elements
are the expected values of the individual random variables that are the elements of the
random vector.

Example (Expected Value of a Random Vector)

Suppose, for example, we have two random variables x and y , and their expected values are 0
and 2, respectively. If we put these variables into a vector ξ, it follows that

E (ξ) = E

([
x
y

])
=

[
E (x)
E (y)

]
=

[
0
2

]
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Variance-Covariance Matrix of a Random Vector

Variance-Covariance Matrix of a Random Vector

Given a random vector ξ with expected value µ, the variance-covariance matrix Σξξ is defined
as

Σξξ = E (ξ − µ)(ξ − µ)′ (1)

= E (ξξ′) − µµ′ (2)

If ξ is a deviation score random vector, then µ = 0, and

Σξξ = E (ξξ′)
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Variance-Covariance Matrix of a Random Vector

Comment

Let’s “concretize” the preceding result a bit by giving an example with just two variables.

Example (Variance-Covariance Matrix)

Suppose

ξ =

[
x1
x2

]
and

µ =

[
µ1
µ2

]
Note that ξ contains random variables, while µ contains constants. Computing E (ξξ′), we find

E
(
ξξ′

)
= E

([
x1
x2

] [
x1 x2

])
= E

([
x21 x1x2
x2x1 x22

])
=

[
E (x21 ) E (x1x2)
E (x2x1) E (x22 )

]
(3)
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Variance-Covariance Matrix of a Random Vector

Comment

Example (Variance-Covariance Matrix [ctd.)

] In a similar vein, we find that

µµ′ =

[
µ1
µ2

] [
µ1 µ2

]
=

[
µ21 µ1µ2
µ2µ1 µ22

]
(4)

Subtracting Equation 4 from Equation 3, and recalling that
Cov(xi , xj) = E (xixj) − E (xi )E (xj), we find

E (ξξ′) − µµ′ =

[
E (x21 ) − µ21 E (x1x2) − µ1µ2

E (x2x1) − µ2µ1 E (x22 ) − µ22

]
=

[
σ21 σ12
σ21 σ22

]
James H. Steiger (Vanderbilt University) 8 / 16



Variance-Covariance Matrix of a Random Vector

Covariance Matrix of Two Random Vectors

Given two random vectors ξ and η, their covariance matrix Σξη is defined as

Σξη = E
(
ξη′

)
− E (ξ)E (η′) (5)

= E
(
ξη′

)
− E (ξ)E (η)′ (6)
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Laws of Matrix Expected Value

Laws of Matrix Expected Value
Linear combinations on a random vector

Earlier, we learned how to compute linear combinations of rows or columns of a matrix.

Since data files usually organize variables in columns, we usually express linear
combinations in the form Y = XB.

When variables are in a random vector, they are in the rows of the vector (i.e., they are
the elements of a column vector), so one linear combination is written y = b′x, and a set
of linear combinations is written y = B′x.
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Laws of Matrix Expected Value

Laws of Matrix Expected Value
Expected Value of a Linear Combination

We now present some key results involving the “expected value algebra” of random matrices
and vectors.

As a generalization of results we presented in scalar algebra, we find that, for a matrix of
constants B, and a random vector x,

E
(
B′x

)
= B′E (x) = B′µ

For random vectors x and y, we find

E (x + y) = E (x) + E (y)

Comment. The result obviously generalizes to the expected value of the difference of random
vectors.
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Laws of Matrix Expected Value

Laws of Matrix Expected Value
Matrix Expected Value Algebra

Some key implications of the preceding two results, which are especially useful for reducing
matrix algebra expressions, are the following:

1 The expected value operator distributes over addition and/or subtraction of random
vectors and matrices.

2 The parentheses of an expected value operator can be “moved through” multiplied
matrices or vectors of constants from both the left and right of any term, until the first
random vector or matrix is encountered.

3 E (x′) = (E (x))′

4 For any vector of constants a, E (a) = (a). Of course, the result generalizes to matrices.
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Laws of Matrix Expected Value

An Example

Example (Expected Value Algebra)

As an example of expected value algebra for matrices, we reduce the following expression.
Suppose the Greek letters are random vectors with zero expected value, and the matrices
contain constants. Then

E
(
A′B′ηξ′C

)
= A′B′E

(
ηξ′

)
C

= A′B′ΣηξC
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Laws of Matrix Expected Value

Variances and Covariances for Linear Combinations

As a simple generalization of results we proved for sets of scores, we have the following very
important results:

Given x, a random vector with p variables, having variance-covariance matrix Σxx. The
variance-covariance matrix of any set of linear combinations y = B′x may be computed as

Σyy = B′ΣxxB (7)

In a similar manner, we may prove the following:

Given x and y, two random vectors with p and q variables having covariance matrix Σxy. The
covariance matrix of any two sets of linear combinations w = B′x and m = C′y may be
computed as

Σwm = B′ΣxyC (8)
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Random Number Generation

Random Number Generation

Suppose you have a set of variables x that have zero means and a covariance matrix that is an
identity matrix, i.e., Var(x) = I. Suppose you linearly transform these variables via the formula
y = Fx, where F is a matrix of constants. What is the covariance matrix for y?
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Orthogonalizing a Set of Variables

Orthogonalizing a Set of Variables

Consider a random vector x with Var(x) = Σ.

Consider the random vector y = Σ−1/2x

What is Var(y)?

How might you compute Σ−1/2?

Suppose a set of variables x have a covariance matrix A, and you want to linearly transform
them so that they have a covariance matrix B. How could you do that if you had a computer
program that easily gives you the eigenvectors and eigenvalues of A and B? (Hint: First
orthogonalize them. Then transform the orthogonalized variables to a covariance matrix you
want.)

James H. Steiger (Vanderbilt University) 16 / 16


	Introduction
	Random Vectors and Matrices
	Expected Value of a Random Vector or Matrix

	Variance-Covariance Matrix of a Random Vector
	Laws of Matrix Expected Value
	Random Number Generation
	Orthogonalizing a Set of Variables

